Abstract:

Repeated drug consumption may progress to problematic use by triggering neuroplastic adaptations that attenuate sensitivity to natural rewards while increasing reactivity to craving and drug cues. Converging evidence suggests a single sub-anesthetic dose of the N-methyl-D-aspartate receptor antagonist ketamine may work to correct these neuroadaptations and restore motivation for non-drug rewards. Using an established laboratory model aimed at evaluating behavioral shifts in the salience of cocaine now vs money later, we found that ketamine, as compared to the control, significantly decreased cocaine self-administration by 67% relative to baseline at greater than 24 h post-infusion, the most robust reduction observed to date in human cocaine users and the first to involve mechanisms other than stimulant or dopamine agonist effects. These findings signal new directions in medication development for substance use disorders.

Neural plasticity is defined as the cellular and structural reorganisation
of the brain. Synaptogenesis is a crucial mechanism for
plasticity, since for change to happen within brain circuitry new
synapses between neurons must be formed. Surface expression of
AMPARs and upregulation of other synaptic proteins are involved in
the process of synaptogenesis. Diminished glutamatergic synaptic
transmission and reduced plasticity are thought to be associated
with addiction. Existing models suggest that ketamine’s blockade of NMDA receptors
increases synaptogenesis by stimulating protein synthesis
and the insertion of AMPA receptors. Hence, ketamine’s
effects help to reverse the glutamatergic changes associated
with depression and addiction. 

Animal models of addiction, depression and other psychiatric disorders
have been linked to a reduction in adult neurogenesis . It has been suggested that in addiction
the loss of neurogenesis, especially in cortical and hippocampal
regions, may contribute to levels of self-administration and the
vulnerability of relapsing. The reduction of neurogenesis in addiction is supported in
humans by the reduction in BDNF serum levels. In a study, 37
subjects with diagnosis of alcohol dependence showed significantly
reduced BDNF serum levels compared to healthy individuals
. Similarly, cocaine- and heroin-dependentpatients have significantly lower serum BDNF levels and these
seem to recover during withdrawal. Rapid and transient up-regulation of the neuroplasticity marker
BDNF is implicated as a critical component of the antidepressant
mechanism of ketamine . BDNF knock-out mice do not show anti-depressant response to
ketamine in animal models of depression.

Recent research has
demonstrated that ketamine increases peripheral plasma BDNF in
depressed people who respond to treatment but not in treatment
non-responders or patients receiving an active placebo. These BDNF increases in depressed people given ketamine
are robustly correlated with the drug’s antidepressant effects.

It has been found there is a dispersion in normal brain connectivity and the disruption of the usual pattern of communication  in depression and addictions. . The integrity of functional networks decreased, being the
change maximal in functional hubs such as the thalamus, putamen
and high-level association cortices. In particular, connectivity
within the Default Mode Network was reduced between the posterior
cingulate cortex and the mPFC .
The connectivity between the parahippocampal and the retrosplenial
cortex also decreased as well as the segregation between
other major functional networks such as the salience, attention and
different visual networks Infusions of ketamine have shown to decrease connectivity
between and within resting-state consciousness networks.
Connectivity between the mPFC and the rest of the Default
Mode Network (via the posterior cingulate cortex) has been found
to be reduced, along with the integrity and activity of the salience
and visual networks are also affected. Since it is known
that connectivity with the mPFC is elevated in depression , the reduction of connectivity in the Default Mode
Network observed during the psychedelic experience might be a
mechanism that helps treat depressive states, which are very
common in addicts and predictive of relapse.

Given addiction is highly co-morbid with depression   and ketamine’s role within psychiatry changed
dramatically when it was discovered to be an anti-depressant, we
now briefly describe the research concerning ketamine and
depression. In 2000, the first clinical trial hinted at the potential of
ketamine as a treatment for depression. Four subjects diagnosed
with depression were intravenously administered 0.5 mg/kg of
ketamine in a randomised, double-blind design. The results were
compared to the injection of saline solutions in 3 subjects with an
equivalent diagnosis. Comparison on the Hamilton Rating Scale for
Depression (HAM-D) showed moderate evidence for a greater
reduction in scores after ketamine infusion compared to saline
(Berman et al., 2000). The reduction was rapid and outlasted the
subjective effects of ketamine, lasting for 3 days after infusion.
Despite the small sample size and the limited follow-up, this result
and anti-depressant effects observed in animal models of depression
encouraged researchers in the field to perform more studies in humans . Since then, over 30 studies have
examined the antidepressants effects of ketamine in patients with
treatment-resistant major depressive and bipolar disorders.

Ketamine has shown a 65-70% response rate in treating
depression within 24 h, which contrasts with the ~47% response
rate of conventional monoaminergic antidepressants after weeks
or months . Furthermore,
ketamine’s antidepressant actions are almost immediate and last
for approximately a week ,
whereas conventional antidepressive medications take weeks to
have an effect, are given daily and most of them fail to exert long lasting
effects . Furthermore, studies
have consistently shown that after a ketamine infusion there is a
significant reduction in suicidal ideation which also lasts for several
days.Depression and addiction’s co-expression is almost ubiquitous
People with alcohol, opioids, cannabis and
cocaine use disorders show notably higher rates of depression than
the average of the general population. Furthermore, high levels of depression and anxiety
may predispose relapse to: heroin, alcohol, cannabis and cocaine.

Memories and their creation and alteration is felt to be at the heart of cues and triggers and relapse in addiction. Once consolidated, memories are thought to be stored in a
stabilised state after initial acquisition. Shortly after reactivation
(i.e. remembered) of consolidated memories, these are rendered
transiently unstable and labile, before they then re-stabilise. This
process has been named reconsolidation . After reconsolidation,
the memories are stored again, but they may have been slightly
altered or updated. Each time memories are reactivated the latest
version is retrieved and they are again susceptible to change. During reconsolidation memories may be vulnerable to
manipulation and disruption. This was first demonstrated in animals
using fear conditioning. Rodents were trained to associate a
neutral stimulus with a shock such that the neutral stimulus elicited
a fear response. Researchers eliminated this fear response by
pharmacologically disrupting the reconsolidation process . Reward memories can also be disrupted such that a
neutral stimulus that once elicited appetitive behaviour no longer
does so. Therefore, non-pharmacological and drug therapies that
aim at weakening drug-cue memories via manipulation of reconsolidation
are of interest. Preclinical studies have shown that ketamine affects reconsolidation
of drug memories. . A recent review has suggested that ketamine (along with other psychedelics)
may be able to disrupt maladaptive appetitive memories
(Fattore et al., 2017).  Psychedelics and reconsolidation of traumatic and appetitive maladaptive memories: focus on cannabinoids and ketamine

Article ABSTRACT:

Rationale

Clinical data with 3,4-methylenedioxymethamphetamine (MDMA) in post-traumatic stress disorder (PTSD) patients recently stimulated interest on the potential therapeutic use of psychedelics in disorders characterized by maladaptive memories, including substance use disorders (SUD). The rationale for the use of MDMA in PTSD and SUD is being extended to a broader beneficial “psychedelic effect,” which is supporting further clinical investigations, in spite of the lack of mechanistic hypothesis. Considering that the retrieval of emotional memories reactivates specific brain mechanisms vulnerable to inhibition, interference, or strengthening (i.e., the reconsolidation process), it was proposed that the ability to retrieve and change these maladaptive memories might be a novel intervention for PTSD and SUD. The mechanisms underlying MDMA effects indicate memory reconsolidation modulation as a hypothetical process underlying its efficacy.

Objective

Mechanistic and clinical studies with other two classes of psychedelic substances, namely cannabinoids and ketamine, are providing data in support of a potential use in PTSD and SUD based on the modulation of traumatic and appetitive memory reconsolidation, respectively. Here, we review preclinical and clinical data on cannabinoids and ketamine effects on biobehavioral processes related to the reconsolidation of maladaptive memories.

Results

We report the findings supporting (or not) the working hypothesis linking the potential therapeutic effect of these substances to the underlying reconsolidation process. We also proposed possible approaches for testing the use of these two classes of drugs within the current paradigm of reconsolidation memory inhibition.

Furthermore, a meta-analysis of pre-clinical
studies found evidence suggesting that NMDAR antagonists can
be used to target reward memory reconsolidation, and more successfully
than adrenergic antagonists such as propranolol (Das
et al., 2013)  Das, R.K., Freeman, T.P., Kamboj, S.K., 2013. The effects of N-methyl d-aspartate and B-adrenergic receptor antagonists on the reconsolidation of reward memory: a meta-analysis. Neurosci. Biobehav. Rev. 37, 240-255.:

Abstract

Pharmacological memory reconsolidation blockade provides a potential mechanism for ameliorating the maladaptive reward memories underlying relapse in addiction. Two of the most promising classes of drug that interfere with reconsolidation and have translational potential for human use are N-methyl-d-aspartate receptor (NMDAR) and B-Adrenergic receptor (B-AR) antagonists. We used meta-analysis and meta-regression to assess the effects of these drugs on the reconsolidation of reward memory in preclinical models of addiction. Pharmacokinetic, mnemonic and methodological factors were assessed for their moderating impact on effect sizes. An analysis of 52 independent effect sizes (NMDAR = 30, B-AR = 22) found robust effects of both classes of drug on memory reconsolidation, but a far greater overall effect of NMDAR antagonism than B-AR antagonism. Significant moderating effects of drug dose, relapse process and primary reinforcer were found. The findings suggest that reward memory reconsolidation can be robustly targeted by NMDAR antagonists and to a lesser extent, by B-AR antagonists. Implications for future clinical work are discussed.

Highlights

► Meta-analysis of NMDAR and B-adrenergic antagonists in preclinical reward reconsolidation. ► Larger effects of NMDAR (r = .613) than B-adrenergic (r = .24) antagonists were found. ► ‘Relapse process’, trace type, reinforcer and drug dose moderated effect sizes. ► NMDAR antagonists particularly might be of clinical use in treating addiction.

 

.

                                                           Mystical experiences and psychedelic effects

Mystical experiences and psychedelic effects provoked by
classic psychedelic drugs have been shown to be psychologically
beneficial in long-term studies.They have not only been linked with positive
outcomes in various treatments, but also to ‘life-changing’,
‘spiritually meaningful’ and ‘eye opening’ events.In the ketamine studies described
above, anecdotal and qualitative reports suggest that the subjective
psychedelic experience seemed to help patients. For example, to
help them: undergo a cathartic process, improve relationships with
the world and other people, maintain positive psychological
changes and enhance self-awareness and personal growth.During KPT, patients reported a feeling of ‘resolution’ and
‘catharsis’ of some psychological problems, mainly those related to
alcohol. Furthermore, the degree of mystical experience was also
linked to the insight and impact of KPT reported by patients
. Interestingly, the intensity of the negative experiences (experiences associated
with negative emotions, fear and horror) during the
ketamine session was associated with longer remission. This was
blindly and quantitatively assessed by analysing patient’s selfreports.
Moreover, spirituality, self-concept, emotional attitudes
to other people and positive changes in life values and purposes
were improved after the ketamine experience.

Notably, ketamine’s mystical experiences, but not dissociative
effects, were found to mediate ketamine’s increase motivation to
quit 24 h after the infusion in cocaine addicts .
Moreover, consistent with previous studies, it was also observed
that mystical experiences were positively dose-dependent. This
study therefore provides evidence that the mystical experience
induced by ketamine is important in its therapeutic mechanism
. Speculatively, mystical experiences may help
to rapidly shift patients’ mindsets towards the integration and
acceptance of a sober lifestyle.

The acute disruptions of the functional networks, especially the
alterations to the default mode network, are related to the psychedelic
experience. In fact, the degree of network dissolution in
LSD and psilocybin is correlated with the intensity of the psychedelic
experience . The disruption to the default mode network may engender a reduction
in rumination and maladaptive repetitive thoughts. Psychological
therapies for addiction often aim to help the patient consider
different ways of life, especially those without the drug, and a
pharmacological agent such as ketamine which expedites that
process may be useful in treating addiction.

Speculatively, ketamine can
provide a unique mental state during and after acute drug effects
that facilitates and enriches therapeutic experiences, which in turn
may improve efficacy and lengthen treatment effects. Furthermore, synaptogenesis
and neurogenesis are putatively critical in learning new
information . The uptake of psychological therapy may
therefore be facilitated after ketamine infusions due increases in
synaptogenesis and neurogenesis, and thus improved learning of
relapse-reducing strategies, such as those used in relapseprevention
based cognitive behavioural therapy (CBT). In fact, the
idea that neurogenesis and synaptogenesis work synergistically
with psychological therapies is becoming recognised as a new
approach in the treatment of mental disorders . Theoretically, the administration of ketamine (which can
produce a ‘psychedelic’ experience) may open people’s minds so
they are more able to embrace what is presented during therapy as
well as enhancing the uptake of new therapeutic content.

The promise of ketamine in the treatment of addiction is supported
by research with large treatment effect sizes, especially in
comparison to existing treatments. In recently detoxified alcoholics,
ketamine treatment increased one-year abstinence rates in
alcoholics from 24% in the control to 66% in the ketamine group
(Krupitsky and Grinenko, 1997) and reduced cocaine self administration
by 67% relative to baseline in non-treatment
seeking cocaine users (Dakwar et al., 2016). These results clearly
demonstrate profound effects of ketamine administration (with
and without therapy) on drug and alcohol use, of an order of
magnitude which is 2 or 3 times more effective than existing
pharmacotherapies.

Ketamine for the treatment of addiction Evidence and potential mechanisms

 

Alberini, C.M., Ledoux, J.E., 2013. Memory reconsolidation. Curr. Biol. 23,
R746-R750. https://doi.org/10.1016/j.cub.2013.06.046.
American Psychiatric Association, 2013. Diagnostic and Statistical Manual of Mental
Disorders, fifth ed. fifth ed.. Washington, DC: Author.
Angelucci, F., Ricci, V., Pomponi, M., Conte, G., Mathe, A.A., Attilio Tonali, P., Bria, P.,
2007. Chronic heroin and cocaine abuse is associated with decreased serum
concentrations of the nerve growth factor and brain-derived neurotrophic
factor. J. Psychopharmacol. 21. https://doi.org/10.1177/0269881107078491.
Autry, A.E., Adachi, M., Nosyreva, E., Na, E.S., Los, M.F., Cheng, P.F., Kavalali, E.T.,
Monteggia, L.M., 2011. NMDA receptor blockade at rest triggers rapid behavioural
antidepressant responses. Nature 475, 91-95. https://doi.org/10.1038/
nature10130.
Ballard, E.D., Ionescu, D.F., Voort, J.L., Vande, Niciu, M.J., Ameli, R., Richards, E.M.,
Luckenbaugh, D.A., Brutsch, N.E., Furey, M.L., Zarate, C.A.J., 2014. Improvement
in suicidal ideation after ketamine infusion: relationship to reductions in
depression and anxiety, 58, 161-166. https://doi.org/10.1016/j.jpsychires.2014.
07.027.
Barney, W., 1977. Mexican Therapy: “Like the End of the world.”. San Fr. Exam. 24.
Berman, R.M., Cappiello, A., Anand, A., Oren, D.A., Heninger, G.R., Charney, D.S.,
Krystal, J.H., 2000. Antidepressant effects of ketamine in depressed patients.
Soc. Biol. Psychiatry 47, 351-354. https://doi.org/10.1016/S0006-3223(99)
00230-9.
Berti, M., Baciarello, M., Troglio, R., Fanelli, G., 2009. Clinical uses of low-dose ketamine
in patients undergoing surgery. Curr. Drug Targets 10, 707e715. https://
doi.org/10.2174/138945009788982496.
Bogenschutz, M.P., Forcehimes, A.A., Pommy, J.A., Wilcox, C.E., Barbosa, P.C.R.,
Strassman, R.J., 2015. Psilocybin-assisted treatment for alcohol dependence: a
proof-of-concept study. J. Psychopharmacol. 29, 289-299. https://doi.org/10.
1177/0269881114565144.
Bonhomme, V., Vanhaudenhuyse, A., Demertzi, A., Bruno, M.-A., Jaquet, O.,
Bahri, M.A., Plenevaux, A., Boly, M., Boveroux, P., Soddu, A., Brichant, J.F.,
Maquet, P., Laureys, S., 2016. Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers.
Anesthesiology 873-888. https://doi.org/10.1097/ALN.
0000000000001275.
Cai, Y.C., Ma, L., Fan, G.H., Zhao, J., Jiang, L.Z., Pei, G., 1997. Activation of N-methyl-Daspartate
receptor attenuates acute responsiveness of delta-opioid receptors.
Mol. Pharmacol. 51, 583e587. https://doi.org/10.1124/mol.51.4.583.
Canbay, O., Celebi, N., Sahin, A., Celiker, V., Ozgen, S., Aypar, U., 2008. Ketamine
gargle for attenuating postoperative sore throat. Br. J. Anaesth. 100, 490-493.
https://doi.org/10.1093/bja/aen023.
Carhart-Harris, R., Leech, R., Hellyer, P., Shanahan, M., Feilding, A., Tagliazucchi, E.,
Chialvo, D., Nutt, D., 2014. The entropic brain: a theory of conscious states
informed by neuroimaging research with psychedelic drugs. Front. Hum.
Neurosci. 8 (20). https://doi.org/10.3389/fnhum.2014.00020.
Carhart-Harris, R.L., Erritzoe, D., Williams, T., Stone, J.M., Reed, L.J., Colasanti, A.,
Tyacke, R.J., Leech, R., Malizia, A.L., Murphy, K., Hobden, P., Evans, J., Feilding, A.,
Wise, R.G., Nutt, D.J., 2012. Neural correlates of the psychedelic state as determined
by fMRI studies with psilocybin. Proc. Natl. Acad. Sci. U. S. A 109,
2138-2143. https://doi.org/10.1073/pnas.1119598109.
Carhart-Harris, R.L., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W.,
Murphy, K., Tagliazucchi, E., Schenberg, E.E., Nest, T., Orban, C., Leech, R.,
Williams, L.T., Williams, T.M., Bolstridge, M., Sessa, B., McGonigle, J., Sereno, M.I.,
Nichols, D., Hellyer, P.J., Hobden, P., Evans, J., Singh, K.D., Wise, R.G., Curran, H.V.,
Feilding, A., Nutt, D.J., 2016. Neural correlates of the LSD experience revealed by
multimodal neuroimaging. Proc. Natl. Acad. Sci. 113 (201518377). https://doi.
org/10.1073/pnas.1518377113.
Carstensen, M., Møller, A.M., 2010. Adding ketamine to morphine for intravenous
patient-controlled analgesia for acute postoperative pain: a qualitative review
of randomized trials. Br. J. Anaesth. 104, 401-406. https://doi.org/10.1093/bja/
aeq041.
Chambers, R., 2013. Adult hippocampal neurogenesis in the pathogenesis of
addiction and dual diagnosis disorders. Drug Alcohol Depend. 130. https://doi.
org/10.1016/j.drugalcdep.2012.12.005.
Clarke, H., Woodhouse, L.J., Kennedy, D., Stratford, P., Katz, J., 2011. Strategies aimed
at preventing chronic post-surgical pain: comprehensive perioperative pain
management after total joint replacement surgery. Physiother. Can. 63,
289-304. https://doi.org/10.3138/ptc.2009-49P.
Clements, J.A., Nimmo, W.S., Grant, I.S., 1982. Bioavailability, pharmacokinetics, and
analgesic activity of ketamine in humans. J. Pharm. Sci. 71, 539-542. https://doi.
org/10.1002/jps.2600710516.
Collier, B.B., 1972. Ketamine and the conscious mind. Anaesthesia 27, 120-134.
https://doi.org/10.1111/j.1365-2044.1972.tb08186.x.
Constantinou, N., Morgan, C.J.A., Battistella, S., O’Ryan, D., Davis, P., Curran, H.V.,
2010. Attentional bias, inhibitory control and acute stress in current and former
opiate addicts. Drug Alcohol Depend. 109, 220-225. https://doi.org/10.1016/j.
drugalcdep.2010.01.012.
Corlett, P.R., Cambridge, V., Gardner, J.M., Piggot, J.S., Turner, D.C., Everitt, J.C.,
Arana, F.S., Morgan, H.L., Milton, A.L., Lee, J.L., Aitken, M.R.F., Dickinson, A.,
Everitt, B.J., Absalom, A.R., Adapa, R., Subramanian, N., Taylor, J.R., Krystal, J.H.,
Fletcher, P.C., 2013. Ketamine effects on memory reconsolidation favor a
learning model of delusions. PLoS One 8, e65088. https://doi.org/10.1371/
journal.pone.0065088.
Corominas-Roso, M., Roncero, C., Eiroa-Orosa, F.J., Gonzalvo, B., Grau-Lopez, L.,
Ribases, M., Rodriguez-Cintas, L., Sanchez-Mora, C., Ramos-Quiroga, J.A.,
Casas, M., 2013. Brain-derived neurotrophic factor serum levels in cocainedependent
patients during early abstinence. Eur. Neuropsychopharmacol 23,
1078-1084. https://doi.org/10.1016/j.euroneuro.2012.08.016.
Curran, H.V., Freeman, T.P., Mokrysz, C., Lewis, D.A., Morgan, C.J.A., Parsons, L.H.,
2016. Keep off the grass? Cannabis, cognition and addiction. Nat. Rev. Neurosci.
17, 293-306. https://doi.org/10.1038/nrn.2016.28.
Dakwar, E., Anerella, C., Hart, C.L., Levin, F.R., Mathew, S.J., Nunes, E.V., 2014a.
Therapeutic infusions of ketamine: do the psychoactive effects matter? Drug
Alcohol Depend. 136, 153-157. https://doi.org/10.1016/j.drugalcdep.2013.12.
019.
Dakwar, E., Hart, C.L., Levin, F.R., Nunes, E.V., Foltin, R.W., 2016. Cocaine selfadministration
disrupted by the N-methyl-D-aspartate receptor antagonist
ketamine: a randomized, crossover trial. Mol. Psychiatry 1-6. https://doi.org/
10.1038/mp.2016.39.
Dakwar, E., Levin, F., Foltin, R.W., Nunes, E.V., Hart, C.L., 2014b. The effects of subanesthetic
ketamine infusions on motivation to quit and cue-induced craving in
cocaine-dependent research volunteers. Biol. Psychiatry 76, 40-46. https://doi.
org/10.1016/j.biopsych.2013.08.009.
Das, R.K., Freeman, T.P., Kamboj, S.K., 2013. The effects of N-methyl d-aspartate and
B-adrenergic receptor antagonists on the reconsolidation of reward memory: a
meta-analysis. Neurosci. Biobehav. Rev. 37, 240e255. https://doi.org/10.1016/j.
neubiorev.2012.11.018.
Das, R.K., Hindocha, C., Freeman, T.P., Lazzarino, A.I., Curran, H.V., Kamboj, S.K., 2015.
Assessing the translational feasibility of pharmacological drug memory reconsolidation
blockade with memantine in quitting smokers. Psychopharmacology
(Berl) 232, 3363-3374. https://doi.org/10.1007/s00213-015-3990-2.
DiazGranados, N., Ibrahim, L.A., Brutsche, N.E., Ameli, R., Henter, I.D.,
Luckenbaugh, D.A., Machado-Vieira, R., Zarate, C.A.J., 2010. Rapid resolution of
suicidal ideation after a single infusion of an NMDA antagonist in patients with
treatment-resistant major depressive disorder. J. Clin. Psychiatr. 71, 1605e1611.
https://doi.org/10.4088/JCP.09m05327blu.Rapid.
Domino, E.F., 2010. Taming the ketamine tiger. Anesthesiology 113, 678-686functional connectivity during ketamine alteration of consciousness in volunteers.
Anesthesiology 873-888. https://doi.org/10.1097/ALN.
0000000000001275.
Cai, Y.C., Ma, L., Fan, G.H., Zhao, J., Jiang, L.Z., Pei, G., 1997. Activation of N-methyl-Daspartate
receptor attenuates acute responsiveness of delta-opioid receptors.
Mol. Pharmacol. 51, 583e587. https://doi.org/10.1124/mol.51.4.583.
Canbay, O., Celebi, N., Sahin, A., Celiker, V., Ozgen, S., Aypar, U., 2008. Ketamine
gargle for attenuating postoperative sore throat. Br. J. Anaesth. 100, 490e493.
https://doi.org/10.1093/bja/aen023.
Carhart-Harris, R., Leech, R., Hellyer, P., Shanahan, M., Feilding, A., Tagliazucchi, E.,
Chialvo, D., Nutt, D., 2014. The entropic brain: a theory of conscious states
informed by neuroimaging research with psychedelic drugs. Front. Hum.
Neurosci. 8 (20). https://doi.org/10.3389/fnhum.2014.00020.
Carhart-Harris, R.L., Erritzoe, D., Williams, T., Stone, J.M., Reed, L.J., Colasanti, A.,
Tyacke, R.J., Leech, R., Malizia, A.L., Murphy, K., Hobden, P., Evans, J., Feilding, A.,
Wise, R.G., Nutt, D.J., 2012. Neural correlates of the psychedelic state as determined
by fMRI studies with psilocybin. Proc. Natl. Acad. Sci. U. S. A 109,
2138-2143. https://doi.org/10.1073/pnas.1119598109.
Carhart-Harris, R.L., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W.,
Murphy, K., Tagliazucchi, E., Schenberg, E.E., Nest, T., Orban, C., Leech, R.,
Williams, L.T., Williams, T.M., Bolstridge, M., Sessa, B., McGonigle, J., Sereno, M.I.,
Nichols, D., Hellyer, P.J., Hobden, P., Evans, J., Singh, K.D., Wise, R.G., Curran, H.V.,
Feilding, A., Nutt, D.J., 2016. Neural correlates of the LSD experience revealed by
multimodal neuroimaging. Proc. Natl. Acad. Sci. 113 (201518377). https://doi.
org/10.1073/pnas.1518377113.
Carstensen, M., Møller, A.M., 2010. Adding ketamine to morphine for intravenous
patient-controlled analgesia for acute postoperative pain: a qualitative review
of randomized trials. Br. J. Anaesth. 104, 401e406. https://doi.org/10.1093/bja/
aeq041.
Chambers, R., 2013. Adult hippocampal neurogenesis in the pathogenesis of
addiction and dual diagnosis disorders. Drug Alcohol Depend. 130. https://doi.
org/10.1016/j.drugalcdep.2012.12.005.
Clarke, H., Woodhouse, L.J., Kennedy, D., Stratford, P., Katz, J., 2011. Strategies aimed
at preventing chronic post-surgical pain: comprehensive perioperative pain
management after total joint replacement surgery. Physiother. Can. 63,
289-304. https://doi.org/10.3138/ptc.2009-49P.
Clements, J.A., Nimmo, W.S., Grant, I.S., 1982. Bioavailability, pharmacokinetics, and
analgesic activity of ketamine in humans. J. Pharm. Sci. 71, 539-542. https://doi.
org/10.1002/jps.2600710516.
Collier, B.B., 1972. Ketamine and the conscious mind. Anaesthesia 27, 120e134.
https://doi.org/10.1111/j.1365-2044.1972.tb08186.x.
Constantinou, N., Morgan, C.J.A., Battistella, S., O’Ryan, D., Davis, P., Curran, H.V.,
2010. Attentional bias, inhibitory control and acute stress in current and former
opiate addicts. Drug Alcohol Depend. 109, 220-225. https://doi.org/10.1016/j.
drugalcdep.2010.01.012.
Corlett, P.R., Cambridge, V., Gardner, J.M., Piggot, J.S., Turner, D.C., Everitt, J.C.,
Arana, F.S., Morgan, H.L., Milton, A.L., Lee, J.L., Aitken, M.R.F., Dickinson, A.,
Everitt, B.J., Absalom, A.R., Adapa, R., Subramanian, N., Taylor, J.R., Krystal, J.H.,
Fletcher, P.C., 2013. Ketamine effects on memory reconsolidation favor a
learning model of delusions. PLoS One 8, e65088. https://doi.org/10.1371/
journal.pone.0065088.
Corominas-Roso, M., Roncero, C., Eiroa-Orosa, F.J., Gonzalvo, B., Grau-Lopez, L.,
Ribases, M., Rodriguez-Cintas, L., Sanchez-Mora, C., Ramos-Quiroga, J.A.,
Casas, M., 2013. Brain-derived neurotrophic factor serum levels in cocainedependent
patients during early abstinence. Eur. Neuropsychopharmacol 23,
1078e1084. https://doi.org/10.1016/j.euroneuro.2012.08.016.
Curran, H.V., Freeman, T.P., Mokrysz, C., Lewis, D.A., Morgan, C.J.A., Parsons, L.H.,
2016. Keep off the grass? Cannabis, cognition and addiction. Nat. Rev. Neurosci.
17, 293-306. https://doi.org/10.1038/nrn.2016.28.
Dakwar, E., Anerella, C., Hart, C.L., Levin, F.R., Mathew, S.J., Nunes, E.V., 2014a.
Therapeutic infusions of ketamine: do the psychoactive effects matter? Drug
Alcohol Depend. 136, 153-157. https://doi.org/10.1016/j.drugalcdep.2013.12.
019.
Dakwar, E., Hart, C.L., Levin, F.R., Nunes, E.V., Foltin, R.W., 2016. Cocaine selfadministration
disrupted by the N-methyl-D-aspartate receptor antagonist
ketamine: a randomized, crossover trial. Mol. Psychiatry 1e6. https://doi.org/
10.1038/mp.2016.39.
Dakwar, E., Levin, F., Foltin, R.W., Nunes, E.V., Hart, C.L., 2014b. The effects of subanesthetic
ketamine infusions on motivation to quit and cue-induced craving in
cocaine-dependent research volunteers. Biol. Psychiatry 76, 40-46. https://doi.
org/10.1016/j.biopsych.2013.08.009.
Das, R.K., Freeman, T.P., Kamboj, S.K., 2013. The effects of N-methyl d-aspartate and
B-adrenergic receptor antagonists on the reconsolidation of reward memory: a
meta-analysis. Neurosci. Biobehav. Rev. 37, 240e255. https://doi.org/10.1016/j.
neubiorev.2012.11.018.
Das, R.K., Hindocha, C., Freeman, T.P., Lazzarino, A.I., Curran, H.V., Kamboj, S.K., 2015.
Assessing the translational feasibility of pharmacological drug memory reconsolidation
blockade with memantine in quitting smokers. Psychopharmacology
(Berl) 232, 3363-3374. https://doi.org/10.1007/s00213-015-3990-2.
DiazGranados, N., Ibrahim, L.A., Brutsche, N.E., Ameli, R., Henter, I.D.,
Luckenbaugh, D.A., Machado-Vieira, R., Zarate, C.A.J., 2010. Rapid resolution of
suicidal ideation after a single infusion of an NMDA antagonist in patients with
treatment-resistant major depressive disorder. J. Clin. Psychiatr. 71, 1605-1611.
https://doi.org/10.4088/JCP.09m05327blu.Rapid.
Domino, E.F., 2010. Taming the ketamine tiger. Anesthesiology 113, 678-686

https://doi.org/10.1097/ALN.0b013e3181-d09a2.
Domino, E.F., Chodoff, P., Corssen, G., 1965. Pharmacologic effects of CI-581, a new
dissociative anesthetic, in man. Clin. Pharmacol. Ther. 6, 279-291. https://doi.
org/10.1002/cpt196563279.
Driesen, N.R., McCarthy, G., Bhagwagar, Z., Bloch, M., Calhoun, V., D’Souza, D.C.,
Gueorguieva, R., He, G., Ramachandran, R., Suckow, R.F., Anticevic, A.,
Morgan, P.T., Krystal, J.H., 2013. Relationship of resting brain hyperconnectivity
and schizophrenia-like symptoms produced by the NMDA receptor antagonist
ketamine in humans. Mol. Psychiatry 18, 1199-1204. https://doi.org/10.1038/
mp.2012.194.
Duman, R.S., Aghajanian, G.K., Sanacora, G., Krystal, J.H., 2016. Synaptic plasticity
and depression: new insights from stress and rapid-acting antidepressants. Nat.
Med. 22, 238-249. https://doi.org/10.1038/nm.4050.
Duncan, W.C., Sarasso, S., Ferrarelli, F., Selter, J., Riedner, B.A., Hejazi, N.S., Yuan, P.,
Brutsche, N., Manji, H.K., Tononi, G., Zarate, C.A.J., 2013. Concomitant BDNF and
sleep slow wave changes indicate ketamine-induced plasticity in major
depressive disorder. Int. J. Neuropsychopharmacol. 16, 301e311. https://doi.org/
10.1017/S1461145712000545.
Ebert, B., Mikkelsen, S., Thorkildsen, C., Borgbjerg, F.M., 1997. Norketamine, the
main metabolite of ketamine, is a non-competitive NMDA receptor antagonist
in the rat cortex and spinal cord. Eur. J. Pharmacol. 333, 99e104. https://doi.org/
10.1016/S0014-2999(97)01116-3.
Enderle, A.K., Levionnois, O.L., Kuhn, M., Schatzmann, U., 2008. Clinical evaluation of
ketamine and lidocaine intravenous infusions to reduce isoflurane requirements
in horses under general anaesthesia. Vet. Anaesth. Analg. 35,
297e305. https://doi.org/10.1111/j.1467-2995.2007.00391.x.
Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., Possnert, G.,
Druid, H., Frisen, J., 2014. Neurogenesis in the striatum of the adult human
brain. Cell 156, 1072-1083. https://doi.org/10.1016/j.cell.2014.01.044.
Fattore, L., Piva, A., Zanda, M.T., Fumagalli, G., Chiamulera, C., 2017. Psychedelics and
reconsolidation of traumatic and appetitive maladaptive memories: focus on
cannabinoids and ketamine. Psychopharmacology (Berl) 1e13. https://doi.org/
10.1007/s00213-017-4793-4.
Garcia-Romeu, A., Griffiths, R.R., Johnson, M.W., 2014. Psilocybin-Occasioned
mystical experiences in the treatment of tobacco addiction. Curr. Drug Abuse
Rev. 7, 157-164.
Garg, R., Joshi, S., Mishra, S., Bhatnagar, S., Joshi, S., Mishra, S., 2012. Evidence based
practice of chronic pain. Indian J. Palliat. Care 18, 155e161. https://doi.org/10.
4103/0973-1075.105684.
Giese, K.P., 2012. Memory Mechanisms in Health and Disease: Mechanistic Basis of
Memory. World Scientific.
Goulart, B.K., de Lima, M.N.M., de Farias, C.B., Reolon, G.K., Almeida, V.R.,
Quevedo, J., Kapczinski, F., Schroder, N., Roesler, R., 2010. Ketamine impairs €
recognition memory consolidation and prevents learning-induced increase in
hippocampal brain-derived neurotrophic factor levels. Neuroscience 167,
969-973. https://doi.org/10.1016/J.NEUROSCIENCE.2010.03.032.
Gowing, L.R., Ali, R.L., Allsop, S., Marsden, J., Turf, E.E., West, R., Witton, J., 2015.
Global statistics on addictive behaviours: 2014 status report. Addiction 110,
904-919. https://doi.org/10.1111/add.12899.
Grant, B.F., Stinson, F.S., Dawson, D.A., Chou, S.P., Dufour, M.C., Compton, W.,
Pickering, R.P., Kaplan, K., 2004. Prevalence and co-occurrence of substance use
disorders and independent mood and anxiety disorders: results from the national
epidemiologic survey on alcohol and related conditions. Arch. Gen.
Psychiatr. 61, 807-816. https://doi.org/10.1001/archpsyc.61.8.807.
Greenfield, S.F., Weiss, R.D., Muenz, L.R., Vagge, L.M., Kelly, J.F., Bello, L.R., Michael, J.,
1998. The effect of depression on return to drinking: a prospective study. Arch.
Gen. Psychiatr. 55, 259-265. https://doi.org/10.1001/archpsyc.55.3.259.
Griffiths, R., Richards, W., Johnson, M., McCann, U., Jesse, R., 2008. Mystical-type
experiences occasioned by psilocybin mediate the attribution of personal
meaning and spiritual significance 14 months later. J. Psychopharmacol. 22,
621-632. https://doi.org/10.1177/0269881108094300.
Griffiths, R., Richards, W., Mccann, U., Jesse, R., 2006. Psilocybin can occasion
mystical-type experiences having substantial and sustained personal meaning
and spiritual significance. Psychopharmacol 187, 268e283. https://doi.org/10.
1007/s00213-006-0457-5.
Grof, S., 1985. Beyond the Brain: Birth, Death, and Transcendence in Psychotherapy.
Suny Press.
Haile, C.N., Murrough, J.W., Iosifescu, D.V., Chang, L.C., Al Jurdi, R.K., Foulkes, A.,
Iqbal, S., Mahoney, J.J., De La Garza, R., Charney, D.S., Newton, T.F., Mathew, S.J.,
2014. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine
in treatment-resistant depression. Int. J. Neuropsychopharmacol. 17,
331-336. https://doi.org/10.1017/S1461145713001119.
Hansen, G., Jensen, S.B., Chandresh, L., Hilden, T., 1988. The psychotropic effect of
ketamine. J. Psychoact. Drugs 20, 419-425. https://doi.org/10.1080/02791072.
1988.10472511.
Harmer, C.J., Cowen, P.J., 2013. “It’s the way that you look at it’ea cognitive neuropsychological
account of SSRI action in depression. Philos. Trans. R. Soc. Lond.
B Biol. Sci. 368 (20120407). https://doi.org/10.1098/rstb.2012.0407.
Hasin, D.S., Goodwin, R.D., Stinson, F.S., Grant, B.F., 2005. Epidemiology of major
depressive disorder: results from the national epidemiologic survey on alcoholism
and related conditions. Arch. Gen. Psychiatr. 62, 1097-1106. https://doi.
org/10.1001/archpsyc.62.10.1097.
Hoffer, A., 1967. A Program for the Treatment of Alcoholism: LSD, Malvaria and
Nicotinic Acid, in the Use of LSD in Psychotherapy and Alcoholism. BobbsMerrill,
Indianapolis.

Huang, H., Liu, C.M., Sun, J., Hao, T., Xu, C.M., Wang, D., Wu, Y.Q., 2016. Ketamine
affects the neurogenesis of the hippocampal dentate gyrus in 7-day-old rats.
Neurotox. Res. 30, 185-198. https://doi.org/10.1007/s12640-016-9615-7.
Huge, V., Lauchart, M., Magerl, W., Schelling, G., Beyer, A., Thieme, D., Azad, S.C.,
2010. Effects of low-dose intranasal (S)-ketamine in patients with neuropathic
pain. Eur. J. Pain 14, 387-394. https://doi.org/10.1016/j.ejpain.2009.08.002.
Jansen, K.L.R., Sferios, E., 2001. Ketamine: Dreams and Realities. Multidisciplinary
Association for Psychedelic Studies.
Johnson, M.W., Garcia-Romeu, A., Cosimano, M.P., Griffiths, R.R., 2014. Pilot study of
the 5-HT2AR agonist psilocybin in the treatment of tobacco addiction.
J. Psychopharmacol. 28, 983-992. https://doi.org/10.1177/0269881114548296.
Johnson, M.W., Garcia-Romeu, A., Griffiths, R.R., 2017. Long-term follow-up of
psilocybin-facilitated smoking cessation. Am. J. Drug Alcohol Abuse 43, 55e60.
https://doi.org/10.3109/00952990.2016.1170135.
Kalivas, P.W., 2009. The glutamate homeostasis hypothesis of addiction. Nat. Rev.
Neurosci. 10, 561-572. https://doi.org/10.1038/nrn2515.
Kalivas, P.W., Volkow, N.D., 2005. The neural basis of addiciton: a pathology of
motivation and choice. Am. J. Psychiatr. 162, 1403-1413. https://doi.org/10.1176/
appi.ajp.162.8.1403.
Kavalali, E.T., Monteggia, L.M., 2015. How does ketamine elicit a rapid antidepressant
response? Curr. Opin. Pharmacol. 20, 35-39. https://doi.org/10.1016/j.
coph.2014.11.005.
Keilhoff, G., Bernstein, H.G., Becker, A., Grecksch, G., Wolf, G., 2004. Increased
neurogenesis in a rat ketamine model of schizophrenia. Biol. Psychiatry 56,
317e322. https://doi.org/10.1016/j.biopsych.2004.06.010.
Kessler, R.C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K.R., Rush, A.J.,
Walters, E.E., Wang, P.S., 2003. The epidemiology of major depressive disorder:
results from the National Comorbidity Survey Replication (NCS-R). Jama 289,
3095-3105.
Kolp, E., Friedman, H.L., Krupitsky, E., Jansen, K., Sylvester, M., Young, M.S., Kolp, A.,
2014. Ketamine psychedelic psychotherapy: focus on its pharmacology, phenomenology,
and clinical applications. Int. J. Transpers. Stud 33, 84-140.
Kolp, E., Friedman, H.L., Young, M.S., Krupitsky, E., 2006. Ketamine enhanced psychotherapy:
preliminary clinical observations on its effectiveness in treating
alcoholism. Humanist. Psychol. 34, 399. https://doi.org/10.1207/
s15473333thp3404_7.
Kolp, E., Krupitsky, E., Friedman, H., Young, M.S., 2009. Entheogen-enhanced
transpersonal psychotherapy of addictions: focus on clinical applications of
ketamine for treating alcoholism. Praeger Int. Collect. Addict 3, 403-417.
Kolp, E., Krupitsky, E., Young, M.S., Jansen, K., Friedman, H., O’Connor, L.A., 2007.
Ketamine-enhanced psychotherapy: preliminary clinical observations on its
effects in treating death anxiety. Int J Transpers. Stud 26.
Koob, G.F., Volkow, N.D., 2010. Neurocircuitry of addiction. Neuropsychopharmacology
35, 217-238. https://doi.org/10.1038/npp.2009.110.
Krebs, T.S., Johansen, P.-Ø., 2012. Lysergic acid diethylamide (LSD) for alcoholism:
meta-analysis of randomized controlled trials. J. Psychopharmacol. 26,
994e1002. https://doi.org/10.1177/0269881112439253.
Krupitsky, E.M., 1992. Ketamine psychedelic therapy (KPT) of alcoholism and
neurosis. Multidiscip. Assoc. Psychedelic Stud. Newsl. 3, 24e28.
Krupitsky, E.M., Burakov, A., Romanova, T., Dunaevsky, I., Strassman, R., Grinenko, A.,
2002. Ketamine psychotherapy for heroin addiction: immediate effects and
two-year follow-up. J. Subst. Abuse Treat. 23, 273-283. https://doi.org/10.1016/
S0740-5472(02)00275-1.
Krupitsky, E.M., Burakov, A.M., Dunaevsky, I.V., Romanova, T.N., Slavina, T.Y.,
Grinenko, A.Y., 2007. Single versus repeated sessions of ketamine-assisted
psychotherapy for people with heroin dependence. J. Psychoact. Drugs 39,
13-19. https://doi.org/10.1080/02791072.2007.10399860.
Krupitsky, E.M., Grinenko, A.Y., 1997. Ketamine psychedelic therapy (KPT): a review
of the results of ten years of research. J. Psychoact. Drugs 29, 165-183. https://
doi.org/10.1080/02791072.1997.10400185.
Krystal, J.H., Bennett, A., Abi-Saab, D., Belger, A., Karper, L.P., D’Souza, D.C.,
Lipschitz, D., Abi-Dargham, A., Charney, D.S., 2000. Dissociation of ketamine
effects on rule acquisition and rule implementation: possible relevance to
NMDA receptor contributions to executive cognitive functions. Biol. Psychiatry
47, 137-143. https://doi.org/10.1016/S0006-3223(99)00097-9.
Krystal, J.H., D’Souza, D.C., Karper, L.P., Bennett, A., Abi-Dargham, A., Abi-Saab, D.,
Cassello, K., Bowers Jr., M.B., Vegso, S., Heninger, G.R., 1999. Interactive effects of
subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacology
(Berl) 145, 193-204. https://doi.org/10.1007/s002130051049.
Krystal, J.H., Karper, L.P., Bennett, A., D’Souza, D.C., Abi-Dargham, A., Morrissey, K.,
Abi-Saab, D., Bremner, J.D., Bowers Jr., M.B., Suckow, R.F., 1998. Interactive effects
of subanesthetic ketamine and subhypnotic lorazepam in humans. Psychopharmacology
(Berl) 135, 213-229.
Krystal, J.H., Karper, L.P., Seibyl, J.P., Freeman, G.K., Delaney, R., Bremner, J.D.,
Heninger, G.R., Bowers, M.B., Charney, D.S., 1994. Subanesthetic effects of the
noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic,
perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatr. 51,
199-214. https://doi.org/10.1001/archpsyc.1994.03950030035004.
Krystal, J.H., Sanacora, G., Duman, R.S., 2013. Rapid-acting glutamatergic antidepressants:
the path to ketamine and beyond. Biol. Psychiatry 73, 1133-1141.
https://doi.org/10.1016/j.virol.2008.08.028.Macropinocytosis.
Kubota, T., Hirota, K., Yoshida, H., Takahashi, S., Anzawa, N., Ohkawa, H.,
Kushikata, T., Matsuki, A., 1999. Effects of sedatives on noradrenaline release
from the medial prefrontal cortex in rats. Psychopharmacol 146, 335-338.
https://doi.org/91460335.213.

Kurdi, M.S., Theerth, K.A., Deva, R.S., 2014. Ketamine: current applications in
anesthesia, pain, and critical care. Anesth. Essays Res. 8, 283-290. https://doi.
org/10.4103/0259-1162.143110.
Lapidus, K.A.B., Levitch, C.F., Perez, A.M., Brallier, J.W., Michael, K., Soleimani, L.,
Feder, A., Iosifescu, D.V., Charney, D.S., Murrough, J.W., 2014. A randomized
controlled trial of intranasal ketamine in major depressive disorder. Biol. Psychiatry
76, 970-976. https://doi.org/10.1016/j.biopsych.2014.03.026.A.
Larkin, G.L., Beautrais, A.L., 2011. A preliminary naturalistic study of low-dose ketamine
for depression and suicide ideation in the emergency department,
1127e1131. https://doi.org/10.1017/S1461145711000629.
Lee, J.L.C., 2009. Reconsolidation: maintaining memory relevance. Trends Neurosci.
32, 413-420. https://doi.org/10.1016/j.tins.2009.05.002.
Lee, J.L.C., Di Ciano, P., Thomas, K.L., Everitt, B.J., 2005. Disrupting reconsolidation of
drug memories reduces cocaine-seeking behavior. Neuron 47, 795-801. https://
doi.org/10.1016/j.neuron.2005.08.007.
Lee, J.L.C., Milton, A.L., Everitt, B.J., 2006. Cue-induced cocaine seeking and relapse
are reduced by disruption of drug memory reconsolidation. J. Neurosci. 26,
5881e5887. https://doi.org/10.1523/JNEUROSCI.0323-06.2006.
Lener, M.S., Kadriu, B., Zarate, C.A., 2017. Ketamine and beyond: investigations into
the potential of glutamatergic agents to treat depression. Drugs 77, 381401.
https://doi.org/10.1007/s40265-017-0702-8.
Lepack, A.E., Fuchikami, M., Dwyer, J.M., Banasr, M., Duman, R.S., 2015. BDNF release
is required for the behavioral actions of ketamine. Int. J. Neuropsychopharmacol.
18 pyu033-pyu033. https://doi.org/10.1093/ijnp/pyu033.
Lewis, D.J., 1979. Psychobiology of active and inactive memory. Psychol. Bull. 86,
1054.
Li, N., Lee, B., Liu, R.J., Banasr, M., Dwyer, J.M., Iwata, M., Li, X.Y., Aghajanian, G.,
Duman, R.S., 2010. mTOR-dependent synapse formation underlies the rapid
antidepressant effects of NMDA antagonists (80-.). Science 329, 959-964.
https://doi.org/10.1126/science.1190287.
Lingford-Hughes, A., Welch, S., Peters, L., Nutt, D., 2012. BAP updated guidelines:
evidence-based guidelines for the pharmacological management of substance
abuse, harmful use, addiction and comorbidity: recommendations from BAP.
J. Psychopharmacol. 26, 899-952. https://doi.org/10.1177/0269881112444324.
Lydic, R., Baghdoyan, H.A., 2002. Ketamine and MK-801 decrease acetylcholine
release in the pontine reticular formation, slow breathing, and disrupt sleep.
Sleep 25, 617-622.
Machado-Vieira, R., Salvadore, G., Diazgranados, N., Zarate, C.A.J., 2009. Ketamine
and the next generation of antidepressants with a rapid onset of action. Pharmacol.
Ther. 123, 143e150. https://doi.org/10.1016/j.pharmthera.2009.02.010.
MacLean, K.A., Johnson, M.W., Griffiths, R.R., 2011. Mystical experiences occasioned
by the hallucinogen psilocybin lead to increases in the personality domain of
openness. J. Psychopharmacol. 25, 1453e1461. https://doi.org/10.1177/
0269881111420188.
Mandyam, C.D., Koob, G.F., 2012. The addicted brain craves new neurons: putative
role for adult-born progenitors in promoting recovery. Trends Neurosci. 35,
250e260. https://doi.org/10.1016/j.tins.2011.12.005.
Markou, A., Kosten, T.R., Koob, G.F., 1998. Neurobiological similarities in depression
and drug dependence: a self- medication hypothesis. Neuropsychopharmacology
18, 135-174. https://doi.org/10.1016/S0893-133X(97)
00113-9.
Mason, B.J., Kocsis, J.H., Ritvo, E.C., Cutler, R.B., 1996. A double-blind, placebocontrolled
trial of desipramine for primary alcohol dependence stratified on
the presence or absence of major depression. JAMA1 275, 761-767. https://doi.
org/10.1001/jama.1996.03530340025025.
McAndrew, A., Lawn, W., Stevens, T., Porffy, L., Brandner, B., Morgan, C.J.A., 2017.
A proof-of-concept investigation into ketamine as a pharmacological treatment
for alcohol dependence: study protocol for a randomised controlled trial. Trials
18 (159). https://doi.org/10.1186/s13063-017-1895-6.
McGirr, A., Berlim, M.T., Bond, D.J., Fleck, M.P., Yatham, L.N., Lam, R.W., 2015.
A systematic review and meta-analysis of randomized, double-blind, placebocontrolled
trials of ketamine in the rapid treatment of major depressive episodes.
Psychol. Med. 45, 693-704. https://doi.org/10.1017/S0033291714001603.
Mclellan, A., Lewis, D., O’Brien, C., Kleber, H., 2000. Drug dependence, a chronic
medical illness. JAMA, J. Am. Med. Assoc. 284, 1689. https://doi.org/10.1001/
jama.284.13.1689.
Miller, C.A., Marshall, J.F., 2005. Molecular substrates for retrieval and reconsolidation
of cocaine-associated contextual memory. Neuron 47, 873e884. https://
doi.org/10.1016/J.NEURON.2005.08.006.
Moghaddam, B., Adams, B., Verma, A., Daly, D., 1997. Activation of glutamatergic
neurotransmission by ketamine: a novel step in the pathway from NMDA receptor
blockade to dopaminergic and cognitive disruptions associated with the
prefrontal cortex. J. Neurosci. 17, 2921-2927. https://doi.org/10.1016/0091-
3057(93)90217-H.
Morgan, C.J.A., Curran, H.V., 2012. Ketamine use: a review. Addiction 107, 27e38.
https://doi.org/10.1111/j.1360-0443.2011.03576.x.
Morgan, C.J.A., McAndrew, A., Stevens, T., Nutt, D., Lawn, W., 2017. Tripping up
addiction: the use of psychedelic drugs in the treatment of problematic drug
and alcohol use. Curr. Opin. Behav. Sci. 13, 71-76. https://doi.org/10.1016/j.
cobeha.2016.10.009.
Morgan, C.J.A., Mofeez, A., Brandner, B., Bromley, L., Curran, H.V., 2004. Ketamine
impairs response inhibition and is positively reinforcing in healthy volunteers:
a dose-response study. Psychopharmacology (Berl) 172, 298-308. https://doi.
org/10.1007/s00213-003-1656-y.
Nader, K., Schafe, G.E., Le Doux, J.E., 2000. Fear memories require protein synthesisin the amygdala for reconsolidation after retrieval. Nature 406, 722. https://doi.
org/10.1038/35021052.
Niesters, M., Khalili-Mahani, N., Martini, C., Aarts, L., van Gerven, J., van
Buchem, M.a., Dahan, A., Rombouts, S., 2012. Effect of subanesthetic ketamine
on intrinsic functional brain connectivity. Anesthesiology 117, 868-877. https://
doi.org/10.1097/ALN.0b013e31826a0db3.
Noonan, M.A., Bulin, S.E., Fuller, D.C., Eisch, A.J., 2010. Reduction of adult hippocampal
neurogenesis confers vulnerability in an animal model of cocaine
addiction. J. Neurosci. 30, 304-315. https://doi.org/10.1523/JNEUROSCI.4256-
09.2010.
O’Brien, C.P., Gardner, E.L., 2005. Critical assessment of how to study addiction and
its treatment: human and non-human animal models. Pharmacol. Ther. 108,
18-58. https://doi.org/10.1016/j.pharmthera.2005.06.018.
O’Hara, D., Ganeshalingam, K., Gerrish, H., Richardson, P., 2014. A 2 year experience
of nurse led conscious sedation in paediatric burns. Burns 40, 48-53. https://
doi.org/10.1016/J.BURNS.2013.08.021.
Ota, K.T., Duman, R.S., 2013. Environmental and pharmacological modulations of
cellular plasticity: role in the pathophysiology and treatment of depression.
Neurobiol. Dis. 57, 28-37. https://doi.org/10.1016/j.nbd.2012.05.022.
Oye, I., Paulsen, O., Maurset, A., 1992. Effects of ketamine on sensory perception:
evidence for a role of N-methyl-D-aspartate receptors. J. Pharmacol. Exp.
Therapeut. 260, 1209.
Parwani, A., Weiler, M.A., Blaxton, T.A., Warfel, D., Hardin, M., Frey, K., Lahti, A.C.,
2005. The effects of a subanesthetic dose of ketamine on verbal memory in
normal volunteers. Psychopharmacology (Berl) 183, 265e274. https://doi.org/
10.1007/s00213-005-0177-2.
Paul, R.K., Singh, N.S., Khadeer, M., Moaddel, R., Sanghvi, M., Green, C.E.,
O’Loughlin, K., Torjman, M.C., Bernier, M., Wainer, I.W., 2014. (R,S)-Ketamine
metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine increase the
mammalian target of rapamycin function. Anesthesiology 121, 149e159. https://
doi.org/10.1097/ALN.0000000000000285.
Peterbauer, C., Larenza, P.M., Knobloch, M., Theurillat, R., Thormann, W.,
Mevissen, M., Spadavecchia, C., 2008. Effects of a low dose infusion of racemic
and S-ketamine on the nociceptive withdrawal reflex in standing ponies. Vet.
Anaesth. Analg. 35, 414-423. https://doi.org/10.1111/j.1467-2995.2008.00402.x.
Pettinati, H.M., 2004. Antidepressant treatment of co-occurring depression and
alcohol dependence. Biol. Psychiatry 56, 785-792. https://doi.org/10.1016/j.
biopsych.2004.07.016.
Quello, S.B., Brady, K.T., Sonne, S.C., 2005. Mood disorders and substance use disorder:
a complex comorbidity. Sci. Pract. Perspect 3, 13.
Rebecca, B., Nock, M.K., Charney, D.S., Link, C., 2009. Effects of intravenous ketamine
on explicit and implicit measures of suicidality in treatment-resistant depression.
Biol. Psychiatry 66, 522-526. https://doi.org/10.1016/j.biopsych.2009.04.
029.
Rudd, R., Seth, P., Felicita, D., Scholl, L., 2016. Increases in drug and opioid-involved
overdose deaths d United States, 2010-2015. MMWR Morb. Mortal. Wkly. Rep.
65, 1445-1452. https://doi.org/10.15585/mmwr.mm655051e1.
Sabino, V., Narayan, A.R., Zeric, T., Steardo, L., Cottone, P., 2013. mTOR activation is
required for the anti-alcohol effect of ketamine, but not memantine, in alcoholpreferring
rats. Behav. Brain Res. 9-16. https://doi.org/10.1016/j.bbr.2013.02.
030.mTOR.
Scheidegger, M., Walter, M., Lehmann, M., Metzger, C., Grimm, S., Boeker, H.,
Boesiger, P., Henning, A., Seifritz, E., 2012. Ketamine decreases resting state
functional network connectivity in healthy subjects: implications for antidepressant
drug action. PLoS One 7, 1-9. https://doi.org/10.1371/journal.pone.
0044799.
Scheller, M., Bufler, J., Hertle, I., Schneck, H.J., Franke, C., Kochs, E., 1996. Ketamine
blocks currents through mammalian nicotinic acetylcholine receptor channels
by interaction with both the open and the closed state. Anesth. Analg. 83,
830e836. https://doi.org/10.1097/00000539-199610000-00031.
Sessa, B., 2012. The Psychedelic Renaissance: Reassessing the Role of Psychedelic
Drugs in 21st Century Psychiatry and Society, First. ed. Muswell Hill Press.
Sheline, Y.I., Price, J.L., Yan, Z., Mintun, M.A., 2010. Resting-state functional MRI in
depression unmasks increased connectivity between networks via the dorsal
nexus. Proc. Natl. Acad. Sci. 107, 11020-11025. https://doi.org/10.1073/pnas.
1000446107.
Singh, I., Morgan, C., Curran, V., Nutt, D., Schlag, A., McShane, R., 2017. Ketamine
treatment for depression: opportunities for clinical innovation and ethical
foresight. The Lancet Psychiatry 4, 419e426. https://doi.org/10.1016/S2215-
0366(17)30102-5.
Singh, J.B., Fedgchin, M., Daly, E.J., De Boer, P., Cooper, K., Lim, P., Pinter, C.,
Murrough, J.W., Sanacora, G., Shelton, R.C., Kurian, B., Winokur, A., Fava, M.,
Manji, H., Drevets, W.C., Van Nueten, L., 2016. A double-blind, randomized,
placebo-controlled, dose-frequency study of intravenous ketamine in patients
with treatment-resistant depression. Am. J. Psychiatry 173, 816e826. https://
doi.org/10.1176/appi.ajp.2016.16010037.
Sleigh, J., Harvey, M., Voss, L., Denny, B., 2014. Ketamine – more mechanisms of
action than just NMDA blockade. Trends Anaesth. Crit. Care 4, 76e81. https://
doi.org/10.1016/j.tacc.2014.03.002.
Sonmez, M.B., G € orgülü, Y., K € ose Ç € ınar, R., Kahyacı Kılıç, E., Ünal, A., Vardar, M., 2016.
Alterations of BDNF and GDNF serum levels in alcohol-addicted patients during
alcohol withdrawal. Eur. J. Psychiatr. 30, 109-118.
Sos, P., Klirova, M., Novak, T., Kohutova, B., Horacek, J., Palenicek, T., 2013. Relationship
of ketamine’s antSpadavecchia, C., Stucki, F., Moens, Y., Schatzmann, U., 2002. Anaesthesia in horses
using halothane and intravenous ketamine-guaiphenesin: a clinical study. Vet.
Anaesth. Analg. 29, 20-28. https://doi.org/10.1046/j.1467-2987.2001.00060.x.
Strassman, R.J., 1995. Hallucinogenic drugs in psychiatric research and treatment:
perspectives and prospects. J. Nerv. Ment. Dis. 183, 127e138. https://doi.org/10.
1097/00005053-199503000-00002.
Sunder, R.a, Toshniwal, G., Dureja, G.P., 2008. Ketamine as an adjuvant in sympathetic
blocks for management of central sensitization following peripheral
nerve injury. J. Brachial Plexus Peripher. Nerve Inj. 3, 22. https://doi.org/10.1186/
1749-7221-3-22.
Trivedi, M.H., Rush, A.J., Wisniewski, S.R., Nierenberg, A.A., Warden, D., Ritz, L.,
Norquist, G., Howland, R.H., Lebowitz, B., McGrath, P.J., Shores-Wilson, K.,
Biggs, M.M., Balasubramani, G.K., Fava, M., 2006. Evaluation of outcomes with
citalopram for depression using measurement-based care in STAR*D: implications
for clinical practice. Am. J. Psychiatry 163, 28-40. https://doi.org/10.1176/
appi.ajp.163.1.28.
Tronson, N.C., Taylor, J.R., 2007. Molecular mechanisms of memory reconsolidation.
Nat. Rev. Neurosci. 8, 262. https://doi.org/10.1038/nrn2090.
Vollenweider, F.X., Kometer, M., 2010. The neurobiology of psychedelic drugs: implications
for the treatment of mood disorders. Nat. Rev. Neurosci. 11. https://
doi.org/10.1038/nrn2884.
Vollenweider, F.X., Leenders, K.L., Oye, I., Hell, D., Angst, J., 1997a. Differential psychopathology
and patterns of cerebral glucose utilisation produced by (S)- and
(R)-ketamine in healthy volunteers using positron emission tomography (PET).
Eur. Neuropsychopharmacol 7, 25-38. https://doi.org/0924-977X.
Vollenweider, F.X., Leenders, K.L., Scharfetter, C., Antonini, A., Maguire, P.,
Missimer, J., Angst, J., 1997b. Metabolic hyperfrontality and psychopathology in
the ketamine model of psychosis using positron emission tomography (PET)
and [18F]-fluorodeoxyglucose (FDG). Eur. Neuropsychopharmacol 7, 9e24.
https://doi.org/10.1016/S0924-977X(96)00039-9.
Vollenweider, F.X., Leenders, K.L., Scharfetter, C., Maguire, P., Stadelmann, O.,
Angst, J., 1997c. Positron emission tomography and fluorodeoxyglucose studies
of metabolic hyperfrontality and psychopathology in the psilocybin model of
psychosis. Neuropsychopharmacology 16, 357-372. https://doi.org/10.1016/
S0893-133X(96)00246-1.
Wang, J.H., Fu, Y., Wilson, F.A.W., Ma, Y.Y., 2006. Ketamine affects memory consolidation:
differential effects in T-maze and passive avoidance paradigms in mice.
Neuroscience 140, 993-1002. https://doi.org/10.1016/J.NEUROSCIENCE.2006.
02.062.
Wang, M., Wong, A.H., Liu, F., 2012. Interactions between NMDA and dopamine
receptors: a potential therapeutic target. Brain Res. 1476, 154-163. https://doi.
org/10.1016/j.brainres.2012.03.029.
White, A.M., Jordan, J.D., Schroeder, K.M., Acheson, S.K., Georgi, B.D., Sauls, G.,
Ellington, R.R., Swartzwelder, H.S., 2004. Predictors of relapse during treatment
and treatment completion among marijuana- dependent adolescents in an
intensive outpatient substance abuse pWHO, 2015. WHO Recommends against International Control of Ketamine [WWW
Document]. URL. http://www.who.int/medicines/access/controlled-substances/
recommends_against_ick/en/ (accessed 12.2.17).
Willinger, U., Lenzinger, E., Hornik, K., Fischer, G., Schonbeck, G., Aschauer, H.N., €
Meszaros, K., 2002. Anxiety as a predictor of relapse in detoxified alcoholdependent
patients. Alcohol Alcohol 37, 609-612. https://doi.org/10.1093/
alcalc/37.6.609.
Wittchen, H.U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., Jonsson, B., €
Olesen, J., Allgulander, C., Alonso, J., Faravelli, C., Fratiglioni, L., Jennum, P.,
Lieb, R., Maercker, A., van Os, J., Preisig, M., Salvador-Carulla, L., Simon, R.,
Steinhausen, H.C., 2011. The size and burden of mental disorders and other
disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol 21,
655-679. https://doi.org/10.1016/j.euroneuro.2011.07.018.
WSAVA, 2016. The WSAVA Global Pain Council (GPC)’s Statement on Ketamine
[WWW document]. URL. https://www.wsava.org/sites/default/files/
TheWSAVAGlobalPainCouncilStatementonKetamine.pdf (accessed 12.2.17).
Xue, Y.X., Luo, Y.X., Wu, P., Shi, H.S., Xue, L.F., Chen, C., Zhu, W.L., Ding, Z.B., Bao, Y.P.,
Shi, J., Epstein, D.H., 2012. A memory retrieval-extinction procedure to prevent
drug craving and relapse (80-.). Science 336, 241e245. https://doi.org/10.1126/
science.1215070.A.
Yang, C., Shirayama, Y., Zhang, J., Ren, Q., Yao, W., Ma, M., Dong, C., Hashimoto, K.,
2015. R -ketamine: a rapid-onset and sustained antidepressant without psychotomimetic
side effects. Transl. Psychiatry 5, 1-8. https://doi.org/10.1038/tp.
2015.136.
Zanardini, R., Fontana, A., Pagano, R., Mazzaro, E., Bergamasco, F., Romagnosi, G.,
Gennarelli, M., Bocchio-Chiavetto, L., 2011. Alterations of brain-derived neurotrophic
factor serum levels in patients with alcohol dependence. Alcohol Clin.
Exp. Res. 35, 1529-1533. https://doi.org/10.1111/j.1530-0277.2011.01489.x.
Zanos, P., Moaddel, R., Morris, P.J., Georgiou, P., Fischell, J., Elmer, G.I., Alkondon, M.,
Yuan, P., Pribut, H.J., Singh, N.S., Dossou, K.S.S., Fang, Y., Huang, X.-P., Mayo, C.L.,
Wainer, I.W., Albuquerque, E.X., Thompson, S.M., Thomas, C.J., Zarate, C.A.J.,
Gould, T.D., 2016. NMDAR inhibition-independent antidepressant actions of
ketamine metabolites. Nature 533, 1-18. https://doi.org/10.1038/nature17998.
Zarate, C.A.J., Singh, J.B., Carlson, P.J., Brutsche, N.E., Ameli, R., Luckenbaugh, D.A.,
Charney, D.S., Manji, H.K., 2006. A randomized trial of an N-methyl-D-aspartate
antagonist in treatment-resistant major depression. Arch. Gen. Psychiatr. 638.
https://doi.org/10.1001/archpsyc.63.8.856.
Zhai, H., Wu, P., Chen, S., Li, F., Liu, Y., Lu, L., 2008. Effects of scopolamine and ketamine
on reconsolidation of morphine conditioned place preference in rats.
Behav. Pharmacol. 19, 211-216. https://doi.org/10.1097/fbp.0b013e3282fe88a0.
Zhang, J.-C., Li, S.-X., Hashimoto, K., 2014. R()-ketamine shows greater potency and
longer lasting antidepressant effects than S(þ)-ketamine. Pharmacol., Biochem.
Behav. 116, 137-141. https://doi.org/10.1016/j.pbb.2013.11.033.
Zhao, C., Deng, W., Gage, F.H., 2008. Mechanisms and functional implications of
adult neurogenesis. Cell 132, 645e660. https://doi.org/10.1016/J.CELL.2008.01.
033.

 

 


Area Codes Near Us::
Maryland (MD): Bethesda 20814 – Bethesda 20816 – Bethesda 20817 – Chevy Chase 20815 – Colesville 20904 – Cabin John 20815 – Glen Echo 20812 – Gaithersburg 20855 – Gaithersburg 20877- Gaithersburg 20878 – Gaithersburg 20879 – Garrett Park 20896 – Kensington 20895 – Montgomery Village 20886 – Olney 20830 – Olney 20832 – Potomac 20854 – Potomac 20859 – Rockville 20850 – Rockville 20852 – Rockville 20853 – Silver Spring 20903 – Silver Spring 20905 – Silver Spring 20906 – Silver Spring 20910 – Takoma Park 20912 – Wheaton 20902 Washington DC: Crestwood 20011- North Capitol Hill 20002 – Cathedral Heights 20016 – American University Park 20016 – Columbia Heights 20010 – Mount Pleasant 20010 – Downtown 20036 – Dupont Circle 20009 – Logan Circle 20005- Adams Morgan 20009 – Chevy Chase 20015 – Georgetown 20007 – Cleveland Park 20008 – Foggy Bottom 20037 – Rock Creek Park – Woodley Park 20008 – Tenleytown 20016 Northern Virginia: McLean 22101- McLean 22102 – McLean 22106 – Great Falls 22066 – Arlington 22201 – Arlington 22202 – Arlington 22203 – Arlington 22205 – Falls Church 22041 – Vienna 22181 – Alexandria 22314 – 22308 -22306 -22305 -22304 Fairfax – 20191 – Reston – 22009 – Springfield – 22152 22015 Lorton 22199 Fairfax, Va 2303 – 22307 – 22306 – 22309 – 22308 22311 – 22310 – 22312 22315 -22003 – 20120 – 22015 – 22027 20121 – 22031 – 20124 22030 – 22033 – 22032 – 22035 – 22039 22041 – 22043 22042 – 22046 – 22044 – 22060 – 22066 20151 – 22079 – 20153 – 22101 22102 – 20171 – 20170 – 22124 – 22151 22150 – 22153 22152 – 20191 – 20190 – 22181- 20192 22180 – 20194 – 22182 Woodbridge – 22191 – 22192 -22193 -22194 – 22195 Springfield – 22150 – 22151 -22152-22153-22154-22155 -22156 – 22157 -22158 -22159 -22160